Yablo’s Paradox and the Omitting Types Theorem for Propositional Languages

نویسنده

  • Thomas Forster
چکیده

We start by recapitulating Yablo’s paradox from [1]. We have infinitely many assertions {pi : ∈ IN} and each pi is equivalent to the assertion that all subsequent pj are false. A contradiction follows. There is a wealth of literature on this delightful puzzle, and I have been guilty of a minor contribution to it myself. This literature places Yablo’s paradox in the semantical column of Ramsey’s division of the paradoxes into semantical versus logical paradoxes. However—as I hope to show below—there is merit to be gained by regarding it as a purely logical puzzle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoremizing Yablo's Paradox

To counter a general belief that all the paradoxes stem from a kind of circularity (or involve some self–reference, or use a diagonal argument) Stephen Yablo designed a paradox in 1993 that seemingly avoided self–reference. We turn Yablo’s paradox, the most challenging paradox in the recent years, into a genuine mathematical theorem in Linear Temporal Logic (LTL). Indeed, Yablo’s paradox comes ...

متن کامل

Resolving Infinitary Paradoxes

Graph normal form, GNF, [1], was used in [2, 3] for analysing paradoxes in propositional discourses, with the semantics – equivalent to the classical one – defined by kernels of digraphs. The paper presents infinitary, resolution-based reasoning with GNF theories, which is refutationally complete for the classical semantics. Used for direct (not refutational) deduction it is not explosive and a...

متن کامل

Yablo’s Paradox and Kindred Infinite Liars

This is a defense and extension of Stephen Yablo’s claim that self-reference is completely inessential to the liar paradox. An infinite sequence of sentences of the form “None of these subsequent sentences are true” generates the same instability in assigning truth values. I argue Yablo’s technique of substituting infinity for self-reference applies to all so-called “self-referential” paradoxes...

متن کامل

A Note on Omitting Types in Propositional Logic

Analogues of the classical omitting types theorems of first-order logic are proved for propositional logic. For an infinite cardinal κ, a sufficient criterion is given for the omission of κ-many types in a propositional language with κ propositional variables.

متن کامل

Omitting uncountable types and the strength of [0, 1]-valued logics

We study a class of [0, 1]-valued logics for continuous metric structures. The main result of the paper is maximality theorem that characterizes these logics in terms of a model-theoretic property, namely, an extension of the omitting types theorem to uncountable languages.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011